Eye movement-related brain activity during perceptual and cognitive processing
نویسندگان
چکیده
For several decades researchers have been recording electrical brain activity associated with eye movements in attempt to understand their neural mechanisms. However, recent advances in eye-tracking technology have allowed researchers to use eye movements as the means of segmenting the ongoing brain activity into episodes relevant to cognitive processes in scene perception, reading, and visual search. This opened doors to uncovering the active and dynamic neural mechanisms underlying perception, attention and memory in naturalistic conditions. The present eBook contains a representative collection of studies from various fields of visual neuroscience that use this cutting edge approach of combining eye movements and neural activity. The majority of the articles in the eBook combine the measurement of eye movements with the recording of the electroencephalogram (EEG) in human subjects performing various psychological tasks. The most common methodological approach is examination of the EEG activity time-aligned to certain eye movement events, such as the onset of a fixation or a start of a saccadic eye movement (Fischer et al., 2013; Frey et al., 2013; Henderson et al., 2013; Hutzler et al., 2013; Nikolaev et al., 2013; Richards, 2013; Simola et al., 2013). Several works employ the time-frequency and synchrony analysis (Fischer et al., 2013; Hoffman et al., 2013; Ito et al., 2013; Nakatani and Van Leeuwen, 2013; Nakatani et al., 2013). The advantage of simultaneous EEG and eye movement recording is most evident in investigation of perceptual and cognitive processes during free eye movement behavior. Saccades in free viewing are guided by the bottom-up and top-down attentional mechanisms. To study interactions between these mechanisms Fischer et al. (2013) explored the eye fixation-related potentials (EFRP) and EEG power during extended picture viewing. The difference between the mechanisms was reflected in the EFRP components and in the power of the frontal betaand theta activity. Nakatani and Van Leeuwen (2013) recorded EEG and eye movements during free viewing of the Necker cube. They found that saccades and blinks facilitate perceptual switches. Moreover, the amplitude of alpha activity preceding these eye events predicted whether a blink or a saccade results in the switch. Nikolaev et al. (2013) examined the pre-saccadic EEG activity during free visual exploration of a natural scene in anticipation of a memory test. Their findings illustrate how pre-saccadic activity differentiates encoding of visual information and selection of a target for the next fixation. Simola et al. (2013) investigated attention and emotion processes by analyzing EFRPs in free viewing. They found that emotional processing depends on the overt attentional resources. Ito et al. (2013) observed interaction between low and high frequency components in the local field potentials (LFP) recorded in the visual cortex of monkeys performing voluntary saccades during natural scene viewing. They concluded that the cross-frequency interaction is a manifestation of the mechanism which coordinates oculomotor behavior and sensory processing. Hoffman et al. (2013) recorded the fixation-related neural activity in the human and macaque hippocampus during unrestricted visual search. They found in both species that the fixation-related phase alignment of the hippocampal low-frequency oscillations depends on the visual task. Not only EEG or LFP recordings, but fMRI can be also related to eye movements in free viewing of scenes (Marsman et al., 2013). The authors investigated the neural correlates of ambient and focal processing using fixation-based event-related (FIBER) fMRI in combination with independent component analysis. They reported the eye-movement related activity in the ventromedial and ventrolateral visual cortices. As shown in this eBook, reading studies also benefit from the combination of EEG and eye movement recordings. Henderson et al. (2013) devised an advanced procedure to correct EFRP for eye movement artifacts. After correction the early EFRP components were different between reading and pseudo-reading (control) condition. To investigate parafoveal pre-processing in reading Hutzler et al. (2013) applied the X-mask in the task of new/old word judgment. The time course of the EFRP indicated dynamical interference of the parafoveal mask with foveal word recognition. Frey et al. (2013) studied decision making during reading using EFRP. They compared EFRP when participants fixated the words related and unrelated to the predefined decision conditions. The late EFRP components appeared to be indicative of the semantic decision. Furthermore, two studies investigated brain activity during performance of particular saccade tasks. Nakatani et al. (2013) measured cross-frequency phase coupling in peri-fixation brain activity during semantic judgment in the controlled saccade conditions. They concluded that the cross-frequency phase synchrony constitutes a plausible mechanism for tagging of fixation information. Richards (2013) used prosaccade and antisaccade
منابع مشابه
Methodological Aspects of Cognitive Rehabilitation with Eye Movement Desensitization and Reprocessing (EMDR)
A variety of nervous system components such as medulla, pons, midbrain, cerebellum, basal ganglia, parietal, frontal and occipital lobes have role in Eye Movement Desensitization and Reprocessing (EMDR) processes. The eye movement is done simultaneously for attracting client's attention to an external stimulus while concentrating on a certain internal subject. Eye movement guided by therapist i...
متن کاملRapid eye movement sleep dreaming is characterized by uncoupled EEG activity between frontal and perceptual cortical regions.
EEG coherent activity is involved in the binding of spatially separated but temporally correlated stimuli into whole events. Cognitive features of rapid eye movement sleep (REM) dreaming resemble frontal lobe dysfunction. Therefore, temporal coupling of EEG activity between frontal and perceptual regions was analyzed from 10 min prior to dream reports (8 adults) from stage-2 and REM sleep. EEG ...
متن کاملRAPID EYE MOVEMENT SLEEP DEPRIVATION INDUCES ACETYLCHOLINESTERASE A CTIVITY IN THE PREOPTIC AREA OF THE RAT BRAIN
Acetylcholinesterase (AchE) is a large glycoprotein that, aside from its known cholinolytic activity, co-exists with other transmitter systems and possesses other functions. In the present study, the effects of short-term rapid-eye-movement sleep deprivation (REM-SD) on AchE activity in the anterior hypothalamic area have been investigated. Using the flower-pot method, adult male albino ra...
متن کاملسازمان ادراکی و انسجام مرکزی حین پردازشهای دیداری در کودکان اُتیسم: شواهدی برای از هم گسیختگی ارتباطات کارکردی در مغز اُتیستیک
Objective: A variety of evidence demonstrate altered perceptual functioning during visual processing in the brain of children with autism.it possibly is related to or the cause other diagnostic symptom in autism spectrum. In the present study visual perceptual organization in autistic children is studied. These processes require central coherence and typical functional connectivity among neural...
متن کاملEffects of directional expectations on motion perception and pursuit eye movements.
Expectations about future motions can influence both perceptual judgements and pursuit eye movements. However, it is not known whether these two effects are due to shared processing, or to separate mechanisms with similar properties. We have addressed this question by providing subjects with prior information about the likely direction of motion in an upcoming random-dot motion display and meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014